
Compilers
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Today’s Lecture

 Lexical Analysis
 Finite Automata
 Regular Expressions

© 2023 Arthur Hoskey. All
rights reserved.

Lexical Analysis

 The process of converting a sequence of characters (such
as in a computer program or web page) into a sequence of
lexical tokens (strings with an assigned and thus identified
meaning).

 Taken from:

https://en.wikipedia.org/wiki/Lexical_analysis

 Lexical analysis is based in formal language theory.

 A formal language tool called a finite automata is used to
help with recognizing string patterns (sequences of
characters).

© 2023 Arthur Hoskey. All
rights reserved.

https://en.wikipedia.org/wiki/Lexical_analysis

Formal Language

 Alphabet – Non-empty set of symbols. ∑ is used to
represent the alphabet. For example, ∑ = {a, b}
represents an alphabet with the symbols a and b in it.

 Strings – Sequence of symbols.

 Formal Language – Set of strings. For example:

 L = {aa, ab, ba, bb}.

 The strings aa, ab, ba, bb makeup the language L

 Basically, any set of strings can be thought of as a
language.

 Taken from:

https://en.wikipedia.org/wiki/Alphabet_(formal_languages)

https://en.wikipedia.org/wiki/Formal_language

© 2023 Arthur Hoskey. All
rights reserved.

https://en.wikipedia.org/wiki/Alphabet_(formal_languages)
https://en.wikipedia.org/wiki/Formal_language

Kleene Star (∑*)

 ∑* – Represents the set of all possible strings for a given
alphabet. Any language over ∑ will be a subset of ∑*.

 For example:

∑ = {a, b}

∑* = {a, b, aa, ab, ba, bb, aaa, aab, abb, …}

 For example:

∑ = {a}

∑* = {a, aa, aaa, aaaa, …}

© 2023 Arthur Hoskey. All
rights reserved.

Keeps going forever. It should

generate every possible combination

of a and b. The set is infinite.

All strings that only contain the

letter a

Example - Strings from Alphabet

 Which of the following strings are valid for the alphabet

 ∑ = {a, b, +}

© 2023 Arthur Hoskey. All
rights reserved.

String Is Valid?

abc

a+b

ab++

a-b

aabb

//+ab

+++++

Example - Strings from Alphabet

 Which of the following strings are valid for the alphabet

 ∑ = {a, b, +}

ANSWER

© 2023 Arthur Hoskey. All
rights reserved.

String Is Valid?

abc No

a+b Yes

ab++ Yes

a-b No

aabb Yes

//+ab No

+++++ Yes

c is not in alphabet

- is not in alphabet

/ is not in alphabet

Example - Strings from Alphabet

 Which of the following strings are valid for the alphabet

 ∑ = {0, 1}

© 2023 Arthur Hoskey. All
rights reserved.

String Is Valid?

0

000

1

010101

012

1-0

01+

Example - Strings from Alphabet

 Which of the following strings are valid for the alphabet

 ∑ = {0, 1}

ANSWER

© 2023 Arthur Hoskey. All
rights reserved.

String Is Valid?

0 Yes

000 Yes

1 Yes

010101 Yes

012 No

1-0 No

01+ No

2 is not in alphabet

- is not in alphabet

+ is not in alphabet

Example - Languages

 Which strings are members of the language L for the given
alphabet?

 ∑ = {a, b}

 L = {a, b, aa, bb, ab}

© 2023 Arthur Hoskey. All
rights reserved.

String Is Member of
Language?

a

ab

ba

bb

bbb

bba

abc

Example - Languages

 Which strings are members of the language L for the given
alphabet?

 ∑ = {a, b}

 L = {a, b, aa, bb, ab}

© 2023 Arthur Hoskey. All
rights reserved.

String Is Member of
Language?

a Yes

ab Yes

ba No

bb Yes

bbb No

bba No

abc No

ba is not in L

bbb is not in L

bba is not in L

This defines the

valid strings in L

abc is not in L or ∑* (c is not

even a character in the alphabet)

Example - Languages

 Which strings are members of the language L for the given
alphabet?

 ∑ = { ; }

 L = {; , ;; , ;;;}

© 2023 Arthur Hoskey. All
rights reserved.

String Is Member of
Language?

;

a

;;;

;;;;

;b

;;;;;

Example - Languages

 Which strings are members of the language L for the given
alphabet?

 ∑ = { ; }

 L = {; , ;; , ;;;}

© 2023 Arthur Hoskey. All
rights reserved.

String Is Member of
Language?

; Yes

a No

;;; Yes

;;;; No

;b No

;;;;; No

Too many ;

;b is not in L and b not in alphabet

Too many ;

This defines the

valid strings in L

a is not in L and a not in alphabet

Finite Automata

 Now on to finite automata…

© 2023 Arthur Hoskey. All
rights reserved.

Finite Automata

 Finite Automata - A tool for recognizing a language.

 A finite automata is given a string and tells whether or not
that string is a member of the language it defines.

 Regular Languages – Can be recognized by finite
automata and regular expressions.

© 2023 Arthur Hoskey. All
rights reserved.

Finite Automata
(a tool for checking if a
string is in a language)

String

to check

Yes/No

answer

Input

Give a string as

input to the

finite automata

Output

Finite automata returns

yes if the input string is

in the language and no

otherwise

Deterministic Finite Automata

Deterministic Finite Automata (DFA)

 Circles represent states. Each state is identified by the letter q and a
numeric subscript. For example, q0.

 Arrows represent transitions from one state to another.

 Starting state. One arrow from nowhere that points at a specific state (q0
in the finite automata below).

 A green circle is an accepting state.

 If all input characters are consumed and it is in an accepting state, then
the string is accepted.

 DFA. Each state must have one transition leaving it for each symbol in the
alphabet.

q0

© 2022 Arthur Hoskey. All
rights reserved.

q1

1q0 is the

staring state

What string(s) will be

accepted by this

finite automata?
0

q2

0,1

0,1

Deterministic Finite Automata

Deterministic Finite Automata (DFA)

 Only the string 1 will be accepted.

 L = { 1 }

q0

© 2022 Arthur Hoskey. All
rights reserved.

q1

1q0 is the

staring state

0

q2
0,1

0,1

If 1 is encountered when in state q0 it

transitions to state q1.

If 0 is encountered when in state q0 it

transitions to q2 . Once it is in q2 it

cannot leave that state.

If it is in state q1 and it gets any input,

it will go to state q2 and be stuck there.

Deterministic Finite Automata

This finite automata accepts strings that start with 1.

A string is accepted if there is a path from the start state to the
accepting state.

Alphabet: ∑ = {0, 1}

L = {1, 11, 10, 111, 110, 101, 100…}

q0

© 2022 Arthur Hoskey. All
rights reserved.

q1

1

0,1

Transitions. A transition is an arrow

going from one state to another. Each

transition is labeled with a symbol from

the alphabet.

Start State. The start state

has an arrow coming into it.

q0 is the start state.

States. Each circle is a state. The

states in this finite automata are

q0, q1, and q2.

Accepting State. An accepting state

is colored green (also called a final

state)

q2

0 0,1

Dead State. q2 is a dead state or

dummy state since the accepting state

(q1) cannot be reached.

DFA Transition Table

Transition Table

A transition table shows the state changes given an input.

→ identifies the start state (q0 below)

* identifies an accepting state (q2 below)

 Alphabet: ∑ = {0, 1}

q0

© 2022 Arthur Hoskey. All
rights reserved.

q1

1

0,1

q2

0 0,1

Current
State 0 1

→q0 q2 q1

*q1 q1 q1

q2 q2 q2

Draw Finite Automata from
Transition Table – Problem 1

Draw the finite automata for the given alphabet and transition table.

→ Signifies starting state

* Signifies accepting state

Alphabet: ∑ = {0, 1}

© 2022 Arthur Hoskey. All
rights reserved.

Current
State

0 1

→q0 q1 q2

q1 q1 q3

q2 q2 q2

*q3 q3 q3

Draw Finite Automata from
Transition Table – Problem 1

Draw the finite automata for the given alphabet and transition table.

→ Signifies starting state

* Signifies accepting state

Alphabet: ∑ = {0, 1}

q0

© 2022 Arthur Hoskey. All
rights reserved.

q1

0

0

q2

1 0,1

Current
State

0 1

→q0 q1 q2

q1 q1 q3

q2 q2 q2

*q3 q3 q3

q3

1

0,1

Answer

Draw Finite Automata from
Transition Table – Problem 2

Draw the finite automata for the given alphabet and transition table.

→ Signifies starting state

* Signifies accepting state

Alphabet: ∑ = {0, 1}

© 2022 Arthur Hoskey. All
rights reserved.

Current
State

0 1

→q0 q2 q1

q1 q0 q3

q2 q2 q2

*q3 q1 q3

Draw Finite Automata from
Transition Table – Problem 2

Draw the finite automata for the given alphabet and transition table.

→ Signifies starting state

* Signifies accepting state

Alphabet: ∑ = {0, 1}

q0

© 2022 Arthur Hoskey. All
rights reserved.

q1

1

q2

0
0,1

Current
State

0 1

→q0 q2 q1

q1 q0 q3

q2 q2 q2

*q3 q1 q3

q3

1

1

Answer

0 0

Types of Finite Automata

 Deterministic Finite Automata (DFA)
◦ Every state must have a transition for each symbol in the alphabet.

◦ Cannot have more than one edge with the same symbol leaving a
state.

 Non-deterministic Finite Automata (NFA)
◦ Allows more than one transition with the same label from a state.

◦ Allows transitions for an empty string (ε).

 All DFAs are NFAs.

 Not every NFA is an DFA.
◦ If an NFA has a ε transition, then it is not a DFA.

◦ If an NFA has a state with multiple transitions with the same label
leaving that state it is not a DFA.

 Note: ε is epsilon.

© 2023 Arthur Hoskey. All
rights reserved.

Nondeterministic Finite Automata

Nondeterministic Finite Automata (NFA)

q0

© 2022 Arthur Hoskey. All
rights reserved.

q1

0,1

q0 is the

staring state

0

q2
0,1

1

Why is this an NFA and not a DFA?

ε

ε

q3

0

Nondeterministic Finite Automata

Nondeterministic Finite Automata (NFA)

q0

© 2022 Arthur Hoskey. All
rights reserved.

q1

0,1

q0 is the

staring state

0

q2
0,1

1ε

ε

q3

0

Why is this an NFA and not a DFA?

• Contains empty string transitions

(ε).

• Contains multiple transitions

coming from the same state that

have the same label.

Regular Expressions

 Now on to regular expressions…

© 2023 Arthur Hoskey. All
rights reserved.

Regular Expressions

 Regular Expression - More human-readable way to define a
language (compared to finite automata).

 Regular expressions (RE) are equivalent to finite automata (FA)
with respect to the languages they define.

 The language defined by a regular expression is called a regular
language.

 A regular expression contains the symbols from the alphabet and
the following three operations:
◦ Union – Use the | symbol for union. For example, a|b means either a

or b.

◦ Concatenation – Place the characters one after another. For example,
ab means an a followed by a b.

◦ Closure – Use the * symbol for closure (the star means 0 or more). For
example, a* means 0 or more of a.

 Square Brackets []. Use the [] to select one character from a
range. For example, [0-9] means it will match any character in
the range 0 to 9. The same as (0|1|2|3|4|5|6|7|8|9).

 Parenthesis. Used to show precedence.

© 2023 Arthur Hoskey. All
rights reserved.

Regular Expression Examples

 Regular expression: [1-9][0-9]*

This means one character in the range 1-9 followed by 0 or more
characters in the range 0-9. Some strings that follow this pattern
are: 1, 111, 10, 1999.

 Regular expression: a | b

This means one character that is either a or b. The only strings that
follow this pattern are: a, b.

 Regular expression: [a-c] | xy

This means one character in the range a-c or x. The only strings
that follow this pattern are: a, b, c, xy

© 2023 Arthur Hoskey. All
rights reserved.

Regular Expression Examples

 Regular expression: a*b*

This means 0 or more a characters followed by 0 or more b
characters. Some strings that follow this pattern are: ab, aaab,
abbb, aaa, bbb

 Regular expression: (ab)*

This means 0 or more ab strings (not the same as a*b*). Some
strings that follow this pattern are: ab, abab, ababab, abababab

© 2023 Arthur Hoskey. All
rights reserved.

Regular Expression Example 1

 Regular expression:

c*d*(cd)(ef)*

 Which of the following strings are recognized by the above
regular expression?

© 2023 Arthur Hoskey. All
rights reserved.

String Is Recognized

cd

ef

cde

cdef

dcdef

dcef

cdcdcdef

cccdcd

Regular Expression Example 1

 Regular expression:

c*d*(cd)(ef)*

 Which of the following strings are recognized by the above
regular expression?

© 2023 Arthur Hoskey. All
rights reserved.

String Is Recognized

cd Yes

ef No

cde No

cdef Yes

dcdef Yes

dcef No

cdcdcdef No

cccdcd Yes

Regular Expression Example 2

 Regular expression:

(p|s)*((gh)|i)*

 Which of the following strings are recognized by the above
regular expression?

© 2023 Arthur Hoskey. All
rights reserved.

String Is Recognized

s

ppp

sghi

ppgg

ssghghi

pghp

pig

pigh

Regular Expression Example 2

 Regular expression:

(p|s)*((gh)|i)*

 Which of the following strings are recognized by the above
regular express?

© 2023 Arthur Hoskey. All
rights reserved.

String Is Recognized

s Yes

ppp Yes

sghi Yes

ppgg No

ssghghi Yes

pghp No

pig No

pigh Yes

Regular Expression Example 3

 Regular expression:

([a-c][d-f])*z

 Which of the following strings are recognized by the above
regular express?

© 2023 Arthur Hoskey. All
rights reserved.

String Is Recognized

a

dz

abcdef

z

aaazz

zf

eeez

bbbeeez

Regular Expression Example 3

 Regular expression:

([a-c][d-f])*z

 Which of the following strings are recognized by the above
regular express?

© 2023 Arthur Hoskey. All
rights reserved.

String Is Recognized

a No

dz Yes

abcdef No

z Yes

aaazz No

zf No

eeez Yes

bbbeeez Yes

Regular Expression for a DFA

What regular expression is equivalent to the following deterministic
finite automata?

q0

© 2022 Arthur Hoskey. All
rights reserved.

q1

0

0

q2

1 0,1

q3

1

0,1

Regular Expression for a DFA

What regular expression is equivalent to the following deterministic
finite automata?

q0

© 2022 Arthur Hoskey. All
rights reserved.

q1

0

0

q2

1 0,1

q3

1

0,1

Answer

00*1(0|1)*

1. Must start

with one 0

2. Loop means it

can have any

number of 0

3. Need to have a 1

to reach the

accepting state

4. Can end

with any

number of 0's

or 1's

If it starts with

a 1 then it will

never reach the

accepting state

Regular Expression for a DFA

What regular expression is equivalent to the following deterministic
finite automata?

q0

© 2022 Arthur Hoskey. All
rights reserved.

q1

0

0

q2

1 0,1

q3

1

0,1

Note: The is more than one

accepting state (q2 and q3)

Regular Expression for a DFA

What regular expression is equivalent to the following deterministic
finite automata?

q0

© 2022 Arthur Hoskey. All
rights reserved.

q1

0

0

q2

1 0,1

q3

1

0,1

Answer

00*1(0|1)* | 1(0|1)*

The regex for

this part is:

00*1(0|1)*

Use a union for each path to an

accepting state. q2 and q3 are

accepting states in this example.

Path to q3 Path to q2

The regex for

this part is:

1(0|1)*

Union

Regular Expressions vs Finite
Automata

 Regular Expressions and finite automata both recognize regular
languages.

 They have exactly the same power with respect to recognizing
languages (Kleene's Theorem).

 You can convert any finite automata to an equivalent regular
expression (FA → Reg exp).

 You can convert any regular expression to an equivalent finite
automata (Reg exp → FA).

 Note: FA can be either a DFA or an NFA.

© 2023 Arthur Hoskey. All
rights reserved.

Unsigned Integer RE and FA

Unsigned Integer RE and FA

 Regular Expression

 0 | [1-9][0-9]*

 Finite Automata

© 2023 Arthur Hoskey. All
rights reserved.

q0 q1

1-9

0-9

q2

0

This regular expression is

either a 0 or [1-9] followed by

any number of [0-9]

[0-9] loop transition can be

done any number of times.

This is equivalent to the [0-9]*

in the regular expression.

The 0 transition is the same as

the 0 in the regular expression

(left side of regular expression)

Identifier RE and FA

Identifier RE and FA

 Assume we define an identifier as being any character
followed by any number of alphanumeric characters.

 Regular Expression

 ([a-z] | [A-Z])([a-z] | [A-Z] | [0-9])*

 Finite Automata

© 2023 Arthur Hoskey. All
rights reserved.

Concatenation is being done between the two sets of parenthesis.

One character (from first parenthesis) is concatenated with any

number of alphanumeric characters (second parenthesis).

q0 q1

[a-z] | [A-Z] | [0-9]

The loop transition also allows

numeric characters [0-9][a-z] | [A-Z]

Reserved Word RE and FA

Reserved Word RE and FA

 Assume we need to recognize the "if" keyword in a
language. If is the character i followed by the character f.

 Regular Expression (recognizes the word if)

 if

 Finite Automata (recognizes the word if)

© 2023 Arthur Hoskey. All
rights reserved.

Concatenation is being done. The character

i is followed by the character f.

q0 q1

No loop transition. State q1 is

not an accepting state.

i

q2

f

Convert Regular Expression to an
NFA

 Use Thompson's construction algorithm to convert a
regular expression to an NFA.

https://en.wikipedia.org/wiki/Thompson%27s_construction

 Thompson's construction algorithm focuses on the
following three operations:
◦ Union

◦ Concatenation

◦ * operations.

 There should be one starting state and one accepting state
in the constructed NFA.

© 2023 Arthur Hoskey. All
rights reserved.

https://en.wikipedia.org/wiki/Thompson%27s_construction

Convert Regular Expression to an
NFA – Empty Expression

 Empty expression

 This goes directly from the start state to the accept state.

© 2023 Arthur Hoskey. All
rights reserved.

q0 q1

ε

Convert Regular Expression to an
NFA – Union

 Union expression.

 NFA1 and NFA2 are NFAs.

 The two paths through the whole NFA allow strings that are
accepted by either NFA1 or NFA2.

 This is the union of both NFAs.

© 2023 Arthur Hoskey. All
rights reserved.

ε

ε

ε

ε

NFA1

NFA2

Convert Regular Expression to an
NFA – Concatenation

 Concatenation expression.

 NFA1 is be followed by NFA2.

 Only strings that match NFA1 followed by NFA2 will be
accepted.

 This is the concatenation of both NFAs.

© 2023 Arthur Hoskey. All
rights reserved.

ε ε ε

NFA1 NFA2

Convert Regular Expression to an
NFA – *

 * expression.

 The NFA can be applied 0 or more times to the string.

© 2023 Arthur Hoskey. All
rights reserved.

ε ε

NFA

ε

ε

End of Slides

 End of Slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Compilers
	Slide 2: Today’s Lecture
	Slide 3: Lexical Analysis
	Slide 4: Formal Language
	Slide 5: Kleene Star (∑*)
	Slide 6: Example - Strings from Alphabet
	Slide 7: Example - Strings from Alphabet
	Slide 8: Example - Strings from Alphabet
	Slide 9: Example - Strings from Alphabet
	Slide 10: Example - Languages
	Slide 11: Example - Languages
	Slide 12: Example - Languages
	Slide 13: Example - Languages
	Slide 14: Finite Automata
	Slide 15: Finite Automata
	Slide 16: Deterministic Finite Automata
	Slide 17: Deterministic Finite Automata
	Slide 18: Deterministic Finite Automata
	Slide 19: DFA Transition Table
	Slide 20: Draw Finite Automata from Transition Table – Problem 1
	Slide 21: Draw Finite Automata from Transition Table – Problem 1
	Slide 22: Draw Finite Automata from Transition Table – Problem 2
	Slide 23: Draw Finite Automata from Transition Table – Problem 2
	Slide 24: Types of Finite Automata
	Slide 25: Nondeterministic Finite Automata
	Slide 26: Nondeterministic Finite Automata
	Slide 27: Regular Expressions
	Slide 28: Regular Expressions
	Slide 29: Regular Expression Examples
	Slide 30: Regular Expression Examples
	Slide 31: Regular Expression Example 1
	Slide 32: Regular Expression Example 1
	Slide 33: Regular Expression Example 2
	Slide 34: Regular Expression Example 2
	Slide 35: Regular Expression Example 3
	Slide 36: Regular Expression Example 3
	Slide 37: Regular Expression for a DFA
	Slide 38: Regular Expression for a DFA
	Slide 39: Regular Expression for a DFA
	Slide 40: Regular Expression for a DFA
	Slide 41: Regular Expressions vs Finite Automata
	Slide 42: Unsigned Integer RE and FA
	Slide 43: Identifier RE and FA
	Slide 44: Reserved Word RE and FA
	Slide 45: Convert Regular Expression to an NFA
	Slide 46: Convert Regular Expression to an NFA – Empty Expression
	Slide 47: Convert Regular Expression to an NFA – Union
	Slide 48: Convert Regular Expression to an NFA – Concatenation
	Slide 49: Convert Regular Expression to an NFA – *
	Slide 50: End of Slides

